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Abstract. One-dimensional quantum scattering from a local potential barrier is considered.
Analytical properties of the scattering amplitudes have been investigated by means of the integral
equations equivalent to the Schrödinger equations. The transition and reflection amplitudes are
expressed in terms of two complex functions of the incident energy, which are similar to the
Jost function in partial-wave scattering. These functions are entire for finite-range potentials and
meromorphic for exponentially decreasing potentials. The analytical properties result from the
locality of the potential in the wave equation and represent the effect of causality in the time
dependence of the scattering process.

1. Introduction

The problem of thetunnelling timehas attracted considerable attention for decades [1–4]. It
is indeed important to understand the effect ofcausality on particle and wave propagation.
The problem is that in the conventional time-independent formalism the causality manifests
itself indirectly, i.e. in the analytical properties of the transition amplitudes as functions
of (complex) energy. The relations between causality and analyticity were intensively
investigated in the 1960s when the concept of theS-matrix dominated in particle physics
[5, 6]. At that time, however, the analysis was aimed mainly at three-dimensional scattering
processes and for central-symmetric potentials in particular [7, 8]. Partial-wave scattering
amplitudes in the complex energy plane were also considered in the theory of multichannel
nuclear reactions [9]. The analytical properties of the scattering matrix have also been used
in various fields. For example, in the theory of multi-terminal mesoscopic conductance the
properties of the multi-probeS-matrix were used [10] to obtain the conductance and to
establish the time ordering of the incoming and outgoing lead states. In another work [11],
the low-frequency behaviour of dynamic conductance was related to the phase-delay times
for the carrier transmission and reflection, which are given by the energy derivatives of
the S-matrix elements. The most important feature of the transition amplitudes for various
physical processes in the energy representation is their analyticity in the upper half of the
complex plane. Sometimes one can find out more about singularities in the lower half-
plane, by investigating dynamical equations specific for the physical problem, such as the
Schr̈odinger equation for scattering.

One-dimensional ‘scattering’, i.e. the potential-barrier problem, is somewhat more
complicated than scattering from a force centre, since the system has two channels,
corresponding to two waves running in opposite directions to the potential region in the
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final state. Thus instead of one analytical function, the partial-wave scattering amplitude,
one deals with two analytical functions, the transmission and reflection amplitudes. (The
unitarity condition holds in both cases.) The familiar arguments from scattering theory
must be extended properly to the one-dimensional case. The analytical properties of the
one-dimensionalS-matrix were discussed, in particular, by Faddeev [12, 13] and Newton
[14] in view of the inverse problem. The singularities in the complex energy plane, caused
by bound and quasi-bound states, were considered more recently [15–17].

The purpose of the present work is to investigate the location and character of
singularities in the scattering amplitudes, owing to the potential shape. The investigation
is based upon the Schrödinger equation with a local potential. This enables one to reveal
the general features of the amplitudes, depending on the character of the vanishing of the
potential outside its domain. The analytical properties are essential for application to a
spacetime picture of the barrier transmission.

In section 2, the 2× 2 scattering and transition matrices are introduced and related to
the resolvent of the Schrödinger operator. Next, in section 3, two complex functions are
defined for the potential barrier problem, which are related to elements of the monodromy
matrix. Their role is similar to that of the Jost function in S-wave potential scattering.
These functions have nice analytical properties, which are proven in section 4 by means
of Volterra-type integral equations. It is shown, in particular, that the functions have no
singularities in the whole complex energy plane (except for infinity), if the potential has a
finite range. Singularities appear if the potential behaves exponentially in the asymptotics,
and the slope of the exponent determines the distance to the singularies nearest to the real
energy axis. Some examples are given in the appendix.

2. Transition operator and the S-matrix

The evolution operator is given by the Laplace transform of the resolvent of the Hamiltonian
Ĥ ,

exp(−itĤ ) = 1

2π i

∫
0∞
Ĝεe

−iεt dε Ĝε ≡ (Ĥ − ε)−1. (1)

Here0∞ is the contour in the complexε-plane, running from−∞ to +∞ abovethe real
axis, where the singularities are situated. In scattering problems, the Hamiltonian is the sum
of a potential operator and the kinetic energy, with the eigenvectors describing free particle
states,

Ĥ ≡ Ĥ0 + V̂ Ĥ0|k〉 = ε(k)|k〉. (2)

In non-relativistic scattering theory, we shall use the units whereε(k) = k2. The transition
operatorĤε is introduced as follows

Ĝε = Ĝ(0)
ε − Ĝ(0)

ε ĤεĜ
(0)
ε Ĝ(0)

ε ≡ (Ĥ0 − ε)−1. (3)

It can be expressed directly in terms of the resolventĜε,

Ĥε = V̂ − V̂ ĜεV̂ . (4)

As follows from the time-inversion symmetry (the reciprocity principle),

〈k|Ĥε|k0〉 = 〈−k0|Ĥε| − k〉. (5)
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It is easy to see, using the standard definition of the scattering operatorŜ, that its matrix
elements are expressed in terms of the transition operator on the energy shell,

〈k|Ŝ|k0〉 ≡ lim
t→∞〈k| exp( 1

2itĤ0) exp(−itĤ ) exp( 1
2itĤ0)|k0〉

= δ(k − k0)− 2π iδ[ε(k)− ε(k0)]Tνν0(ε). (6)

Here the scattering amplitude is given by

Tνν0(ε) ≡ 〈k|Ĥε|k0〉 ε(k) = ε = ε(k0) (7)

whereν ≡ k/k, and the standard normalization is used:〈k|k0〉 = δ(k − k0).
In the one-dimensional casek = νk, whereν = ±1, corresponding to two possible

directions of motion for a given energy, and

δ(k − k0) = vδ[ε(k)− ε(k0)]δνν0 v = dε/dk. (8)

The elements of̂S and T̂ (on the energy shell) are given by 2× 2 matricesS andT ,

〈k|Ŝ|k0〉 = vδ[ε(k)− ε(k0)]Sνν0 S ≡ I − 2π i

v
T . (9)

By definition, if Ŝ exists, it is a unitary operator. This fact implies a unitarity condition on
the scattering amplitude, which reads

SS† = I
1

2π i
(T − T †) = −1

v
T T †. (10)

As we will show, the analytical properties ofT (ε) follow from the locality of the potential,
and equation (4).

3. General properties of the transition amplitudes

We consider the Schrödinger equation,

Ĥψ = κ2ψ Ĥ = −(d/dx)2 + V (x) (11)

where−∞ < x < ∞, and the potential is local, i.e.|V (x)| = o(1/x) as |x| → ∞. In
the coordinate representation, the resolvent can be expressed in terms of two fundamental
solutions of the Schrödinger equation,y±(x), satisfying the proper boundary conditions at
±∞, respectively,

〈x|Ĝε|x0〉 = y−(x<)y+(x>)
w(y−, y+)

x>/< = max/min(x, x0) (12)

y±(x) → e±iκx asx → ±∞ (13)

w(y−, y+) ≡ y ′
−y+ − y−y ′

+ = constant.

As soon asε ≡ κ2 is introduced in the Laplace transform (1) for theupper half of the
complex plane, the solutionsy± defined above vanish at±∞, respectively. Thus one has
the properly defined resolvent for the elliptic operatorĤ satisfying the Sommerfeld radiation
condition at infinity [18].

For large|x|, where the potential vanishes, the asymptotics of the fundamental solutions
are given by

y−(x) = ae−iκx + beiκx for x → +∞ (14)

y+(x) = b′e−iκx + ceiκx for x → −∞.

In principle, the solutions are defined by (13) for Reκ > 0 and Imκ → +0, yet the analytical
continuation to the whole complexκ-plane is considered in the following. For real potentials
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V (x), the complex conjugate functionsyκ±(x) are also solutions of the Schrödinger equation,
satisfying the boundary conditions conjugate to (13). Calculating the Wronskians (which
are independent ofx) at x → ±∞ for various pairs of the solutions, one gets a number of
relations between the complex parametersa, b, b′, c:

w(y−, y+) = −2iκa = −2iκc : a = c (15)

w(y−, ȳ−) = constant :|a|2 − |b|2 = 1 (16)

w(y+, ȳ+) = constant :|c|2 − |b′|2 = 1

w(y−, ȳ+) = constant :b′ = −b̄. (17)

Expressingy± in terms of the fundamental solutions, one has

ȳ− = b̄

a
y− + 1

a
y+ ȳ+ = 1

a
y− − b

a
y+. (18)

The analytical continuation of these solutions to the complexκ plane, byyκ±(x) ≡ y−κ̄
± (x),

implies a symmetry ofa(κ) andb(κ) with respect to the imaginaryκ-axis,

a(κ) = a(−κ̄) b(κ) = b(−κ̄). (19)

Thus, the asymptotics of the solutions depend only on two complex functionsa(κ) and
b(κ), satisfying one real condition (16), and subject to the symmetry (19). The transition
amplitudes, elements of theS-matrix andT -matrix, and of the monodromy matrix [19], are
given in terms of these two functions.

If the potential is displaced,b gets a phase shift,

V (x) → V (x − d) a → a b → be−2iκd . (20)

For symmetric potentials one gets an additional relation,

V (x) ≡ V (−x) y−(−x) ≡ y+(x): a = c, b′ = b (21)

so thatb is pure imaginary, in view of (17).
As soon as the resolvent is known from (12), the elements of the transition operator in

the momentum representation are obtained immediately, by (4),

〈k|Ĥε|k0〉 = Ṽ (q)− 1

2π

∫ ∫
dx dx0e−ikx+ik0x0V (x)〈x|Ĝε|x0〉V (x0) (22)

whereq = k − k0, and

Ṽ (q) = 1

2π

∫ +∞

−∞
V (x)e−iqx dx. (23)

The double Fourier transform in (22) is performed by means of the Schrödinger equation,
Vy = y ′′ + κ2y, leading to the following integrals∫ x

−∞
e−ikξV (ξ)y−(ξ) dξ = (η′

− + ikη−)e−ikx + (κ2 − k2)

∫ x

−∞
e−ikξ η−(ξ) dξ (24)∫ ∞

x

e−ikξV (ξ)y+(ξ) dξ = −(η′
+ + ikη+)e−ikx + (κ2 − k2)

∫ ∞

x

e−ikξ η+(ξ) dξ (25)

where we have introduced the functionsη±(x) vanishing at±∞,

η±(x) ≡ y±(x)− e±iκx. (26)
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The result is

〈k|Ĥε|k0〉 = 1

2π iw

∫ ∞

−∞
dxe−iqxV (x)

[(
κ − q

2

)
y+(x)e−iκx +

(
κ + q

2

)
y−(x)eiκx

]
−κ

2 − 1
2(k

2 + k2
0)

2πw

∫ ∞

−∞
dxe−iqx(η+η′

− − η−η′
+)

−(κ2 − k2)(κ2 − k2
0)

1

2π

∫ ∫
dx dx0e−ikx+ik0x0g(x, x0) (27)

wherew = −2iκa, and

g(x, x0) ≡ η−(x<)η+(x>)/w. (28)

On the energy shell wherek2 = κ2 = k2
0, the contributions from the integrals vanish in

equations (24)–(27), and one has

T = 1

2πa

(
α β

β̄ α

)
S = 1

a

(
1 b

−b̄ 1

)
(29)

where

α ≡
∫ ∞

−∞
dxe−iκxV (x)y+(x) =

∫ ∞

−∞
dxeiκxV (x)y−(x) (30)

β ≡
∫ ∞

−∞
dxeiκxV (x)y+(x) =

∫ ∞

−∞
dxe−iκxV (x)y−(x)

a ≡ 1 − α

2iκ
b ≡ β

2iκ
. (31)

The functionsα(κ) andβ(κ) are free of a pole atκ = 0, and are related by the unitarity
condition,

α − ᾱ = i

2κ
(αᾱ − ββ̄). (32)

The transmission and reflection amplitudes areS++ = 1/a and S+− = b/a, respectively,
and detS = ā/a. (The latter equality supports the analogy ofa to the Jost function. If
there is no reflection,b = 0, thena = e−iδ, whereδ(κ) is a real phase shift.) Besides, if
the potential is even, the matricesS andT are symmetrical.

Note that because of the relations (15)–(17) the monodromy matrix [19] composed of
a, b is quasi-unitary,

M =
(
ā −b̄

−b a

)
MEM† = E E =

(
1 0
0 −1

)
. (33)

Under a displacement of the potential, equation (20),M is transformed to

M → DMD† D =
(

1 0
0 e−2iκd

)
. (34)

If V (x) = V1(x − d1) + V2(x − d2), d2 > d1, and the potential domain consists of two
intervals separated by a forceless gap, one has the following superposition rule,

M = D1M1D
†
1D2M2D

†
2 :

a = a1a2 + b1b̄2e2iκ(d2−d1) b = a1b2e−2iκd2 + ā2b1e−2iκd1 (35)

which is a consequence of equations (14) and (20).
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4. Integral equations and the analytical properties

4.1. Volterra equation and series solutions

Analytical properties of the transition amplitudes can be derived from the integral equation
satisfied by the fundamental solutionsy±(x),

y±(x) = e±iκx + 1

κ

∫ x

±∞
sinκ(x − ξ)V (ξ)y±(ξ)dξ. (36)

These equations are of the Volterra type, so the solution exists and admits an analytical
continuation to complexκ for local potentials. In order to separate asymptotic oscillations
of the solutions, let us introduce new functions (the integrals are evaluated by equations (24)
and (25) fork = ±κ),

A−(x) ≡
∫ x

−∞
eiκξV (ξ)y−(ξ) dξ = (y ′

− − iκy−)eiκx + 2iκ

B−(x) ≡
∫ x

−∞
e−iκξV (ξ)y−(ξ) dξ = (y ′

− + iκy−)e−iκx (37)

A+(x) ≡
∫ ∞

x

e−iκξV (ξ)y+(ξ) dξ = −(y ′
+ + iκy+)e−iκx + 2iκ

B+(x) ≡
∫ ∞

x

eiκξV (ξ)y+(ξ) dξ = −(y ′
+ − iκy+)eiκx. (38)

It is easy to see that

dy±
dx

= ±iκ

(
1 − 1

2iκ
A±(x)

)
e±iκx ∓ 1

2
B±(x)e∓iκx

y±(x) =
(

1 − 1

2iκ
A±(x)

)
e±iκx + 1

2iκ
B±(x)e∓iκx (39)

soA andB have definite limits atx → ±∞, cf equations (30),

α ≡ A+(−∞) = A−(+∞) β ≡ B−(+∞) = B+(−∞) (40)

A±(±∞) = 0 = B±(±∞).

The pairs of functions(A,B) satisfy a system of first-order differential equations with zero
initial conditions at infinity. Setting the equations into the integral form, one gets from (37),
in particular, forA− andB−,

A−(x) =
∫ x

−∞
V (ξ)

(
1 − 1

2iκ
A−(ξ)+ 1

2iκ
B−(ξ)e2iκξ

)
dξ (41)

B−(x) =
∫ x

−∞
V (ξ)

((
1 − 1

2iκ
A−(ξ)

)
e−2iκξ + 1

2iκ
B−(ξ)

)
dξ. (42)

This form is especially suitable for the perturbative expansion ofα andβ, namely,

α(κ) =
∫ +∞

−∞
V (ξ) dξ

+ 1

κ

∫ +∞

−∞
dξ2

∫ ξ2

−∞
dξ1V (ξ2)V (ξ1)e

iκ(ξ2−ξ1) sinκ(ξ2 − ξ1)+ · · · (43)

β(κ) =
∫ +∞

−∞
V (ξ)e−2iκξ dξ

+ 1

κ

∫ +∞

−∞
dξ2

∫ ξ2

−∞
dξ1V (ξ2)V (ξ1)e

−iκ(ξ2+ξ1) sinκ(ξ2 − ξ1)+ · · · . (44)
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Using these expansions, one gets a sort of Padé approximation for theS-matrix in (29). Note
that asκ → 0, one hasα − β → 0 while α andβ are regular, so expanding in powers of
κ one can get, for short-range potentials, an analogue of the effective-range approximation
[8].

4.2. Analytical properties

The perturbative series are also used to prove the analytical properties. First of all, one can
extend to equation (36) the standard arguments of scattering theory [8], which are based
upon the inequality

| sinκ(x − ξ)| 6 C
|κx|

1 + |κx|e| Im κ|(x−ξ) (45)

wherex > ξ , andC is a constant. Thus one proves that they±(κ) are analytical in the
domain in the complexκ-plane where∫ x

−∞
exp[−ξ(| Im κ| ± Im κ)] V (ξ) dξ < ∞.

In particular, ifV (x) ≡ 0 for x < x−, for somex−, there is no irregularity asx → −∞.
Similarly, the limit x → +∞ is considered. The fundamental solutions are analytical inκ,
as soon as these two limits are regular.

One may modify the method instead and apply it directly to the functions we are
interested in, given by equations (41) and (42). The substitution

A−(x) = f (x)eiw(x) B−(x) = g(x)e−iw(x) w(x) ≡ 1

2κ

∫ x

−∞
dξV (ξ) (46)

eliminates the diagonal terms from the differential equations, and they are reduced to

f ′ = f0 + P+(x)g f0 = V (x)e−iw(x) (47)

g′ = g0 + P−(x)f g0 = V (x) exp[−2iκx + iw(x)]. (48)

Here

P±(x) ≡ ±V (x)
2iκ

exp(±2i[κx − w(x)]) (49)

and the initial conditions aref (−∞) = 0 = g(−∞). Note thatf (x) andg(x) have limits
as x → ∞, which areα andβ, up to conjugate phase shifts, provided that the potential
is integrable, andw(∞) is finite. The solution to equations (47) and (48) is given by the
series

f =
∞∑
n=1

fn f1(x) =
∫ x

−∞
dξf0(ξ) fn+1(x) =

∫ x

−∞
dξP+(ξ)gn(ξ) (50)

g =
∞∑
n=1

gn g1(x) =
∫ x

−∞
dξg0(ξ) gn+1(x) =

∫ x

−∞
dξP−(ξ)fn(ξ). (51)

Upper bounds forfn andgn for positive and integrable potentials can be obtained by
iteration. From equations (50) and (51), one gets for evenn,

fn(x) =
∫
1n

P+(ξn−1)P−(ξn−2) · · ·P+(ξ1)g0(ξ0)

n−1∏
m=0

dξm

gn(x) =
∫
1n

P−(ξn−1)P+(ξn−2) · · ·P−(ξ1)f0(ξ0)

n−1∏
m=0

dξm (52)
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and for oddn,

fn(x) =
∫
1n

P+(ξn−1)P−(ξn−2) · · ·P−(ξ1)f0(ξ0)

n−1∏
m=0

dξm

gn(x) =
∫
1n

P−(ξn−1)P+(ξn−2) · · ·P+(ξ1)g0(ξ0)

n−1∏
m=0

dξm. (53)

The integrations take place in the domain1n : −∞ < ξ0 < ξ1 < · · · < ξn−1 < x. If we
assume thatV (x) > 0, κw(x) is a real, bounded and non-decreasing function ofx. For
Im κ > 0, we shall use the following inequalities,

|P+(ξi)P−(ξj )| 6 V (ξi)

|2κ|
V (ξj )

|2κ| ξi > ξj

|P+(ξ1)g0(ξ0)| 6 V (ξ1)

|2κ| |f0(ξ0)|
|f0(ξ0)| 6 V (ξ0)

|P−(ξ)| 6 V (ξ)

|2κ| |e−2iκξ ||e2iw(x)| ξ < x. (54)

Similarly, for Imκ < 0,

|P−(ξi)P+(ξj )| 6 V (ξi)

|2κ|
V (ξj )

|2κ| ξi > ξj

|P−(ξ1)f0(ξ0)| 6 V (ξ1)

|2κ| |g0(ξ0)|

|g0(ξ0)| 6 V (ξ0)|e−2iκξ0|
|P+(ξ)| 6 V (ξ)

|2κ| |e2iκξ ||e−2iw(x)| ξ < x. (55)

Using these inequalities one can show that, in the upper half of the complexκ-plane,

|fn(x)| 6 |2κ| |w(x)|
n

n!

|gn(x)e−2iw(x)| 6 |2κ| |w(x)|
n−1

(n− 1)!
|u−(x)| (56)

while in the lower half of the complexκ-plane,

|fn(x)e2iw(x)| 6 |2κ| |w(x)|
n−2

(n− 2)!
|u−(x)u+(x)|

|gn(x)| 6 |2κ| |w(x)|
n−1

(n− 1)!
|u−(x)| (57)

where

u±(x) ≡ 1

2κ

∫ x

−∞
dξV (ξ) exp(±2iκξ). (58)

It is assumed that the integrals exist for realκ and have definite limits asx → ∞ (the
Fourier transform ofV ).

For positive and integrable potentials,f (x) and g(x), and thusα(κ) and β(κ), are
given in terms of infinite series which are absolutely convergent in the domain where the
corresponding Fourier transforms ofV (x) exist, equation (58). Thusα(κ) and a(κ) are
analytical in the upper halfκ-plane. The singularities ofα(κ) and β(κ) appear if the
integrals in equation (58) diverge asx → ∞, which may be only at some valuesκ below
the real axis, at finite distances from it.
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4.3. Finite-range potentials

The functionsα(κ) and β(κ) are entire, ifV (x) = 0 outside an interval(x−, x+). The
analyticity is an immediate result of equations (56)–(58), sinceu± are finite for potentials
with a finite support.

A more direct proof, as well as additional information on the analytic continuation into
the complexκ-plane, can be obtained from explicit expressions fora(κ) and b(κ). Let
us introduce two real (for realκ) solutions of the Schrödinger equation,z0(x) and z1(x),
specified by the following initial conditions,

z0(x−) = 1 z′
0(x−) = 0

z1(x−) = 0 z′
1(x−) = 1. (59)

From the continuity of the wavefunction and of its first derivative atx = x±, one gets the
following expressions fora andb,

a = exp(iκ(x+ − x−))
2iκ

[−ζ ′
0 + iκ(ζ0 + ζ ′

1)+ κ2ζ1]

b = exp(iκ(x+ + x−))
2iκ

[ζ ′
0 − iκ(ζ0 − ζ ′

1)+ κ2ζ1] (60)

whereζ0,1 ≡ z0,1(x+). As soon asζ andζ ′ are analytical functions ofκ2, by the Poincaŕe
theorem [7],α(κ) andβ(κ) are also analytical in the whole complexκ-plane.

For large|κ| and smoothV (x), one can use the semiclassical approximation,

ζ0 =
√
p−
p+

cosθ ζ ′
0 = −√

p−p+ sinθ

ζ1 = 1√
p−p+

sinθ ζ ′
1 =

√
p+
p−

cosθ (61)

where

θ(κ) ≡
∫ x+

x−

√
κ2 − V (x) dx p± ≡

√
κ2 − V (x±). (62)

In this approximation one gets

a = exp(iκ(x+ − x−))
2iκ

√
p−p+

[(κ2 + p−p+) sinθ + iκ(p− + p+) cosθ ]

b = exp(iκ(x+ + x−))
2iκ

√
p−p+

[(κ2 − p−p+) sinθ − iκ(p− − p+) cosθ ]. (63)

Note that this result is exact for the square-well barrier, equation (68), and analytical
continuation to the complex plane is possible. Asymptotical locations of zeros ofa in
the complexκ-plane are given by the equation

exp[−2iθ(κ)] = (κ − p−)(κ − p+)
(κ + p−)(κ + p+)

. (64)

Evidently, there are no zeros in the upper half-plane forV (x) > 0.

4.4. Exponentially decreasing potentials

If V (x) ∝ exp(∓2s±x) asx → ±∞ (s± > 0 are constant);α(κ) andβ(κ) are no longer
entire functions. The singularities appear whenV (x) is not small enough to suppress
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exp(±2iκx), so the integral in equation (58) diverges at±∞. The singularities nearest to
the real axis appear at Imκ = −s± for f andα(κ), and at Imκ = ±s± for g andβ(κ).

Explicit expressions fora(κ) and b(κ), revealing their singularities, can be obtained,
assuming that

V (x) = v2
− exp(2s−(x − x−)) x < x−

V (x) = v2
+ exp(−2s+(x − x+)) x > x+ (65)

wherev± are constants. The solution to the Schrödinger equation forx− < x < x+ is still a
linear combination ofz0 andz1, specified by (59), while forx < x− andx > x+ it is given
by linear combinations of the appropriate Bessel functions. Using the matching conditions
for the wavefunction atx±, one gets

a = −exp(iκ(x+ − x−))
2iκ

0(1 + ν+)0(1 + ν−)(σ+/2)−ν+(σ−/2)−ν− [ζ ′
0Jν+(σ+)Jν−(σ−)

+iv+ζ0J
′
ν+(σ+)Jν−(σ−)+ iv−ζ ′

1Jν+(σ+)J ′
ν−(σ−)

−v+v−ζ1J
′
ν+(σ+)J ′

ν−(σ−)]

b = exp(iκ(x+ + x−))
2iκ

0(1 + ν+)0(1 − ν−)(σ+/2)−ν+(σ−/2)ν− [ζ ′
0Jν+(σ+)J−ν−(σ−)

+iv+ζ0J
′
ν+(σ+)J−ν−(σ−)+ iv−ζ ′

1Jν+(σ+)J ′−ν−(σ−)
−v+v−ζ1J

′
ν+(σ+)J ′−ν−(σ−)] (66)

whereν± = −iκ/s± andσ± = iv±/s±. The singularities are the poles of the0 functions,
as soon as(σ/2)−νJν(σ ) is known [20] to be an entire function in bothσ andν, while ζ
and ζ ′ are analytical functions ofκ2, by the Poincaŕe theorem. Thus, botha(κ) andb(κ)
have infinite series of equidistant poles on the imaginary axis: atκ = −ins± for a(κ) (the
poles are double ifs− = s+), and atκ = ∓ins± for b(κ) (wheren is any positive integer).

The minimal distance of the singularities from the realκ-axis, which was derived from
the integral equations, is non-zero for every potential with an asymptotic exponential decline.
The results of equation (66) are less general. If the assumption of equation (65) is relaxed,
the poles can move off the imaginary axis, as one can see in equation (72) below.

4.5. Singularities of theS-matrix

The singularities of theT - and S-matrices are of physical importance, when the time-
dependent process is considered. They are given by zeros ofa(κ) as well as by the poles
of b(κ), which do not coincide with those ofa(κ).

As was proven in section 4.2, for positive and integrable potentials,a(κ) is analytical
in the upper halfκ-plane, which is a result of causality;β(κ), and thusb(κ), may have
singularities at finite distances above and below the realκ-axis.

The pattern of singularities ofa(κ) andb(κ) in the complexκ-plane is determined by the
asymptotic decline of the potential. For potentials having an asymptotic decline faster than
exponential (e.g. finite-range potentials, and the Gaussian barrier), no singularities appear
for finite κ. For potentials with exponential asymptotics, the distance from the realκ-axis
to the nearest singularities is determined by the slope of the potential at±∞.

It is important thata(κ) has no zeros in the upper half-plane. As soon as the function
is analytical, the number of its zeros is given by the integral

N = 1

2π i

∮
C

da

a
(67)
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where the contourC encloses the upper half of the complex plane. For positive and
integrable potentialsα(κ) is limited in the upper half-plane, soa(κ) → 1 asκ → ∞, and
the integral is zero.

The location of zeros ofa(κ) in the lower half of the complexκ-plane depends on the
specific barrier considered. For finite-range potentials the asymptotic distribution of zeros
is given by equation (64). Other examples are considered in the appendix.

5. Conclusion

We have considered the one-dimensional problem, assuming that the potential is non-
negative everywhere. The barrier transmission and reflection amplitudes are described
in terms of two analytical functionsα(κ) and β(κ), equations (29)–(31). Both the
functions are entire if the potential vanishes outside a finite interval on thex-axis. For
potentials decreasing exponentially, singularities appear at finite distances to the real axis,
corresponding to the decrease rates at±∞. For α(κ), all the singularities are in the lower
half-plane, while forβ(κ), the front slope controls the singularities in the upper half-plane,
and the back slope controls those in the lower half. Poles of theS-matrix are given by
zeros ofa(κ) ≡ 1 − α/2iκ. It is proven that for any non-negative potential they are all in
the lower half-plane.

The causality in the transmission and reflection processes manifests itself in the
analytical properties of the transition amplitudes. These properties have been employed
for the spacetime description of the tunnelling through a potential barrier in the Wigner
phase-space representation [21].
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Appendix. Examples

A number of examples may be found in standard textbooks, e.g. [22].
(i) Square barrier: V (x) = V0 for |x| < x0, V (x) = 0 for |x| > x0.

a(κ) = 1

4κp
[(κ + p)2 exp(2i(κ − p)x0)− (κ − p)2 exp(2i(κ + p)x0)]

β = V0
sin 2x0p

p
(68)

wherep =
√
κ2 − V0. One can see that these functions depend, actually, onp2, so there is

no cut in theκ-plane. Zeros ofa are given by (complex) solutions of the equation

exp(−4ipx0) =
(
κ − p

κ + p

)2

. (69)

This equation has no roots for Imκ > 0. If V0 is small enough, there are two roots on the
imaginaryκ-axis. Other roots appear in pairs, and their asymptotical position is given by

Rep = ± π

2x0
n Imp = − 1

x0
log

2Rep

V0
(70)
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wheren � 1 is an integer.
(ii) Exponential barrier: V (x) = V0 exp(−|x/x0|),

a = − [0(1 + ν)]2

x0κ

( z
2i

)1−4ν
J ′
ν(z)Jν(z)

b = 2π
√
V0

sinh 2πκ
[J ′
ν(z)J−ν(z)+ Jν(z)J

′
−ν(z)] (71)

whereJν(z) is the Bessel function,ν = −2iκ, andz = 2ix0
√
V0.

(iii) The Pöschl–Teller barrier:V (x) = V0/ cosh2(x/x0).

a = i
02(1 − iκx0)

κx00(
1
2 + iσ − iκx0)0(

1
2 − iσ − iκx0)

b = −i
coshπσ

sinhπκx0
(72)

whereσ =
√
V0x

2
0 − 1

4. The functiona(κ) has zeros atκx0 = −i(n+ 1
2)± σ , and (double)

poles atκx0 = −i(n + 1), while β has (simple) poles atκx0 = ±in, n = 1, 2, . . .. (Note
that σ is imaginary for 2x0 < V0

−1/2.)
(iv) Narrow barrier: V (x) = v0δ(x). This is the limit one gets asV0 → ∞, x0 → 0,

2x0V0 = v0, from the three preceding cases. Now both the entire functions are just constant,

α = β = v0 (73)

anda(κ) has one zero atκ = −iv0/2.
(v) A double barrier: V (x) = V1(x−d1)+V2(x−d2). The case of two non-overlapping

barriers is described by equation (35);α andβ remain entire functions. As is well known,
new zeros may appear ina(κ) close to the real axis, corresponding to metastable states of
the particle trapped between the barriers. A special case is that of a symmetrical double
barrier, wherea1 = a2 ≡ coshρe−iδ andb1 = −b̄2 ≡ sinhρeiγ . Now

a = cosh2 ρe−2iδ + sinh2 ρe2iκd

b = i sinh 2ρ cos(κd + δ + γ ) (74)

whered is the distance between the barrier centres. It is easy to see that the reflection
may vanish at certain resonance values of the energy, independently of the reflection from
a single barrier.
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