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Abstract. One-dimensional quantum scattering from a local potential barrier is considered.
Analytical properties of the scattering amplitudes have been investigated by means of the integral
equations equivalent to the Sélinger equations. The transition and reflection amplitudes are
expressed in terms of two complex functions of the incident energy, which are similar to the
Jost function in partial-wave scattering. These functions are entire for finite-range potentials and
meromorphic for exponentially decreasing potentials. The analytical properties result from the
locality of the potential in the wave equation and represent the effect of causality in the time
dependence of the scattering process.

1. Introduction

The problem of theunnelling timehas attracted considerable attention for decades [1-4]. It
is indeed important to understand the effectatisality on particle and wave propagation.
The problem is that in the conventional time-independent formalism the causality manifests
itself indirectly, i.e. in the analytical properties of the transition amplitudes as functions
of (complex) energy. The relations between causality and analyticity were intensively
investigated in the 1960s when the concept of Shmatrix dominated in particle physics
[5, 6]. At that time, however, the analysis was aimed mainly at three-dimensional scattering
processes and for central-symmetric potentials in particular [7, 8]. Partial-wave scattering
amplitudes in the complex energy plane were also considered in the theory of multichannel
nuclear reactions [9]. The analytical properties of the scattering matrix have also been used
in various fields. For example, in the theory of multi-terminal mesoscopic conductance the
properties of the multi-prob&-matrix were used [10] to obtain the conductance and to
establish the time ordering of the incoming and outgoing lead states. In another work [11],
the low-frequency behaviour of dynamic conductance was related to the phase-delay times
for the carrier transmission and reflection, which are given by the energy derivatives of
the S-matrix elements. The most important feature of the transition amplitudes for various
physical processes in the energy representation is their analyticity in the upper half of the
complex plane. Sometimes one can find out more about singularities in the lower half-
plane, by investigating dynamical equations specific for the physical problem, such as the
Schibdinger equation for scattering.

One-dimensional ‘scattering’, i.e. the potential-barrier problem, is somewhat more
complicated than scattering from a force centre, since the system has two channels,
corresponding to two waves running in opposite directions to the potential region in the
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final state. Thus instead of one analytical function, the partial-wave scattering amplitude,
one deals with two analytical functions, the transmission and reflection amplitudes. (The
unitarity condition holds in both cases.) The familiar arguments from scattering theory
must be extended properly to the one-dimensional case. The analytical properties of the
one-dimensional-matrix were discussed, in particular, by Faddeev [12,13] and Newton
[14] in view of the inverse problem. The singularities in the complex energy plane, caused
by bound and quasi-bound states, were considered more recently [15-17].

The purpose of the present work is to investigate the location and character of
singularities in the scattering amplitudes, owing to the potential shape. The investigation
is based upon the Sddinger equation with a local potential. This enables one to reveal
the general features of the amplitudes, depending on the character of the vanishing of the
potential outside its domain. The analytical properties are essential for application to a
spacetime picture of the barrier transmission.

In section 2, the Z 2 scattering and transition matrices are introduced and related to
the resolvent of the Schdinger operator. Next, in section 3, two complex functions are
defined for the potential barrier problem, which are related to elements of the monodromy
matrix. Their role is similar to that of the Jost function in S-wave potential scattering.
These functions have nice analytical properties, which are proven in section 4 by means
of Volterra-type integral equations. It is shown, in particular, that the functions have no
singularities in the whole complex energy plane (except for infinity), if the potential has a
finite range. Singularities appear if the potential behaves exponentially in the asymptotics,
and the slope of the exponent determines the distance to the singularies nearest to the real
energy axis. Some examples are given in the appendix.

2. Transition operator and the S-matrix

The evolution operator is given by the Laplace transform of the resolvent of the Hamiltonian
H1

N 1 ~ ) ~ N
exp(—itH) = %'/ G.e " ds G.=(H-¢L. Q)
I

HereI', is the contour in the complex-plane, running from-oo to +o0o abovethe real

axis, where the singularities are situated. In scattering problems, the Hamiltonian is the sum
of a potential operator and the kinetic energy, with the eigenvectors describing free particle
states,

H=Ho+V Holk) = €(k)|K). )

In non-relativistic scattering theory, we shall use the units wiaétg = k2. The transition
operatorH, is introduced as follows

G, =G -GOA.GO GO =(Hy—o) ™t ©)
It can be expressed directly in terms of the resoh@nt

H =V -VG,V. (4)
As follows from the time-inversion symmetry (the reciprocity principle),

(k|H. ko) = (—kol He| — k). (5)
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It is easy to see, using the standard definition of the scattering opetatbat its matrix
elements are expressed in terms of the transition operator on the energy shell,

(k| S|ko) = Jim (k| exp(3it Ho) exp(—it H) exp(3it Ho) | ko)

= 8(k — ko) — 2mib[e(k) — €(ko)] T, (e). (6)
Here the scattering amplitude is given by
Too(e) = (k|Hclko)  e(k) =& = e(ko) 7

wherev = k/k, and the standard normalization is usélliko) = §(k — ko).
In the one-dimensional cage = vk, wherev = +1, corresponding to two possible
directions of motion for a given energy, and

8(k — ko) = vé[e(k) — €(ko)]8u, v = de/dk. (8)
The elements of and 7 (on the energy shell) are given byx22 matricesS and T,
N 27i
(k|S|ko) = vé[e(k) — €(ko)]Suy, S=1—-—T. 9)

v

By definition, if § exists, it is a unitary operator. This fact implies a unitarity condition on
the scattering amplitude, which reads
sSt=1 i_(T—TT)=—}TTT. (10)
2ri v
As we will show, the analytical properties @f(e) follow from the locality of the potential,
and equation (4).

3. General properties of the transition amplitudes

We consider the Schdinger equation,
Hy =«*y  H=—(d/d0)*+ V@) (11)

where—oco < x < oo, and the potential is local, i.elV(x)| = o(1/x) as|x| — oco. In
the coordinate representation, the resolvent can be expressed in terms of two fundamental
solutions of the Sclidinger equationy.. (x), satisfying the proper boundary conditions at
+o00, respectively,
(WlGolro) = ) magming, xo) (12)
w(y-, y+)
yi(x) — eFex asx — +oo (13)

w(y—, y;) = y_y; — y_y, = constant

As soon ass = «? is introduced in the Laplace transform (1) for thpper half of the
complex plane, the solutions. defined above vanish atoo, respectively. Thus one has
the properly defined resolvent for the elliptic operatbsatisfying the Sommerfeld radiation
condition at infinity [18].

For large|x|, where the potential vanishes, the asymptotics of the fundamental solutions
are given by

y_(x) = a€ " 4 pe* for x — +o0 (14)
yi(x) = b'e " 4 e for x - —o0.

In principle, the solutions are defined by (13) forRe 0 and Imx — +-0, yet the analytical
continuation to the whole complaxplane is considered in the following. For real potentials
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V (x), the complex conjugate functior4 (x) are also solutions of the Sdidinger equation,
satisfying the boundary conditions conjugate to (13). Calculating the Wronskians (which
are independent of) atx — oo for various pairs of the solutions, one gets a number of
relations between the complex parameters, ', c:

w(y_, yy) = —2ika = —2ikc:a =c (15)
w(y_, j_) = constant ja|®> — |b|*> = 1 (16)
w(y,, ¥+) = constant Jc|2 — |b'|> = 1

w(y_, ¥4+) = constant b’ = —b. (17)

Expressingyx in terms of the fundamental solutions, one has

_ b 1 1 b
yo=—y-+ -yt Vi =y-— 4 (18)
a a a a

The analytical continuation of these solutions to the complgtane, byy% (x) = yI* (x),
implies a symmetry ofi(x) andb(x) with respect to the imaginany-axis,
a(k) = a(—k) b(k) = b(—k). (19)

Thus, the asymptotics of the solutions depend only on two complex funeti@nsand
b(x), satisfying one real condition (16), and subject to the symmetry (19). The transition
amplitudes, elements of thematrix and7 -matrix, and of the monodromy matrix [19], are
given in terms of these two functions.

If the potential is displaced; gets a phase shift,

V(x) — V(x —d) a—a b — be 2k, (20)
For symmetric potentials one gets an additional relation,
V(x)=V(—x) y(=x)=y (x)ia=c,b' =b (21)

so thatb is pure imaginary, in view of (17).
As soon as the resolvent is known from (12), the elements of the transition operator in
the momentum representation are obtained immediately, by (4),

N - 1 ) . N
kAo = V(@) — / dr droe Y (1) (x| Gulxo) Vixo)  (22)
whereq = k — ko, and

~ 1 +oo )
Vig) = — / V(x)e ' dx. (23)

27 J_o

The double Fourier transform in (22) is performed by means of thet8atger equation,
Vy = y" + «?y, leading to the following integrals

/ eV (E)y-(§) ds = (1. +ikn)e ™ + (“2_k2)/ e @ o
/ eV E)y(§) dE = — (), +ikne ™ + (k¥ — k) / e, () d (25)

where we have introduced the functioms(x) vanishing attoo,

e (x) = yi(x) — e (26)
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The result is
(K| H ko) = ﬁ f_ : dre V() [ (= 2) yeme™ + (c+ 1) y-me |
—W f_: dve " (n 0" — n-n',)
—(K* = k) (k* — ké)% / dx drge™* g (x, x0) (27)
wherew = —2ika, and
g(x, x0) = n-(x )Ny (x2)/w. (28)

On the energy shell wher& = «? = k3, the contributions from the integrals vanish in
equations (24)—(27), and one has

1 (a B _1/01 b
T_ZM<B a) S_a<—b 1) (29)

o= / " dve Y 0y (1) = f vy () (30)

where

B= / dx€ "V (x)y; (x) = / dxe ™V (x)y_ (x)
o p
- b= _—.
2ik 2ik
The functionsa (k) and 8(x) are free of a pole at = 0, and are related by the unitarity
condition,

a=1

(31)

o—a= L(ozat—,ﬁf}). (32)
2K

The transmission and reflection amplitudes 8te = 1/a and S._ = b/a, respectively,
and detS = a/a. (The latter equality supports the analogyto the Jost function. If
there is no reflectionh = 0, thena = e, wheres(x) is a real phase shift.) Besides, if
the potential is even, the matricdsand 7" are symmetrical.

Note that because of the relations (15)—(17) the monodromy matrix [19] composed of
a, b is quasi-unitary,

_(a —b P (1 0O
M_<_b a) MEM' =E E_(O _1>. (33)
Under a displacement of the potential, equation (20)is transformed to
M — DM D! D= (1 e_gw> . (34)

If V(x) = Vi(x — d1) + Va(x — d2), d» > dy, and the potential domain consists of two
intervals separated by a forceless gap, one has the following superposition rule,

M = DyM,D}D,M,D} :
a = ayax + bll;zezw(dz_dl) b= albze_ZIKdZ + c_lzble_ZIKdl (35)

which is a consequence of equations (14) and (20).
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4. Integral equations and the analytical properties

4.1. Volterra equation and series solutions

Analytical properties of the transition amplitudes can be derived from the integral equation
satisfied by the fundamental solutiops(x),

X

i 1 :
ya(x) = €9 4 ;/ sink(x — &)V (§)y+(§)dé. (36)

+o0
These equations are of the Volterra type, so the solution exists and admits an analytical
continuation to complex for local potentials. In order to separate asymptotic oscillations
of the solutions, let us introduce new functions (the integrals are evaluated by equations (24)
and (25) fork = +«),

A_(x) = / eV (E)y_(6)dE = (v —iky_ ) + 2ik

B_(x) = / eV (£)y (8) A = (v + iy )e s (37)

—0Q

Al = f €Y (£)y, (6) dE = — (v, + Ky, e + 2ik

B = [ EVERE & =0 - ke (38)
It is easy to see that

d 1 o .
DE ik (11— - AL(x) ) €55 = 2By (x)eFkr
2ik 2

dx
1 ' 1 )
y+(x) = (1 - -A:t(x)) e + By (x)e™ (39)
2ix 2ix
so A and B have definite limits ak — 400, cf equations (30),
o= A4 (—00) = A_(+00) B = B_(4+00) = B1(—00) (40)

As(£00) = 0 = By(£00).

The pairs of function§A, B) satisfy a system of first-order differential equations with zero
initial conditions at infinity. Setting the equations into the integral form, one gets from (37),
in particular, forA_ and B_,

X 1 1 .

A_(x) = / V(&) (1— 2fA_(E) + .B_(E)ez'Kz‘:) ds¢ (412)
oo Ik 2ix
. 1 ; 1

B_(x) = / V() ((1— ZiKA—(E)) e 4 ZiKB—(iE)> dé. (42)

This form is especially suitable for the perturbative expansioa ahd 8, namely,

+00
o (k) =/ V(&) dE

[e¢]

1 +00 -f;'z . .
+= / dg, 01V (&) V (1)@ sink (&, — &1) + - - - (43)

K o0 o0

+00 .
Bc) = / V(E)e 2 de

o0

1 +00 & . .
¥ / de [ davEVEDe D sinee — )+ (44)

oo —00
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Using these expansions, one gets a sort oERambroximation for thé-matrix in (29). Note
that ask — 0, one hasx — 8 — 0 while @ and g are regular, so expanding in powers of
x one can get, for short-range potentials, an analogue of the effective-range approximation

[8].

4.2. Analytical properties

The perturbative series are also used to prove the analytical properties. First of all, one can
extend to equation (36) the standard arguments of scattering theory [8], which are based
upon the inequality

. lkx| | _
sink(x —§)| < C— M= 45

wherex > &, andC is a constant. Thus one proves that thgk) are analytical in the
domain in the complex-plane where

/x exp[—&(|Imk| £ Imk)] V(&) dE < oc.

—0o0
In particular, if V(x) = 0 for x < x_, for somex_, there is no irregularity as — —oo.
Similarly, the limitx — +oo is considered. The fundamental solutions are analytical in
as soon as these two limits are regular.
One may modify the method instead and apply it directly to the functions we are
interested in, given by equations (41) and (42). The substitution

A ) =fWeY B =gme™  wk) = % f dVE) (46)
eliminates the diagonal terms from the differential equations, and they are reduced to
f'=fo+Pixg  fo=Vne™ (47)
g=go+P.(x)f go = V(x)exp[-2ikx + iw(x)]. (48)
Here
Pi(x) = :I:% exp(2i[kx — w(x)]) (49)
K

and the initial conditions ar¢' (—oo) = 0 = g(—o00). Note thatf(x) andg(x) have limits
asx — oo, which area and 8, up to conjugate phase shifts, provided that the potential
is integrable, andv(co) is finite. The solution to equations (47) and (48) is given by the
series

I D e R e I (50)
n=1 —00 —00

g=> &  al)= / dego(®)  gualx) = / dg P_(§) fu(&). (51)
n=1 —o0 —00

Upper bounds forf,, and g, for positive and integrable potentials can be obtained by
iteration. From equations (50) and (51), one gets for eyen

n—1
fn(x) = /A Py (§n-1) P-(§1-2) - - - P4 (1) 80(60) 1_[ dé,

m=0

n—1
gn(x) =/A P_(§-1) P+ (5,-2) - - - P_(§1) fo(0) 1_[ dé,, (52)
n m=0
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and for oddn,

n—1
Jn(x) =/A P (§p-1) P-(§5-2) - - - P_(§1) fo(b0) H dé,,

m=0

n—1
00 = [ PP Pz [] dn (53)
Ay m=0

The integrations take place in the domain : —c0 < & < & < --- < &1 < x. Ifwe
assume tha¥v (x) > 0, kw(x) is a real, bounded and non-decreasing function.ofFor
Im« > 0, we shall use the following inequalities,

. A V&) V(E) e
|PL(&) P-(§5))] < 2] [2¢] & > §

V(&)
2| [ fo60)|

| P1(§1)g0(80)| <

| fo(6o)| < V(50

74 ) )
|P_(&)| < %w‘z'“f [ £ <x. (54)
Similarly, for Im« < O,
V(&) V(&
PP < V)

26| 2]

\%
P& foleo)| < 25 g0
2]

lgo(&0)| < V(o) |e™ %)

74 . )
|PL(§)] < %wz'“fne—z'm £ <x. (55)
Using these inequalities one can show that, in the upper half of the compiane,
w(x)|"
| fn ()] < I2K|| 2l

n!

& > &

Diw(x lw ()"
|gn ()€ 2| < 20|~ |u_(x)]| (56)
(n — 1!
while in the lower half of the complex-plane,
iw(x lU(X) 2
e 0] < 2e 20 2 o, )
(n—2)!
lw ()"
lgn(X)] < |2K|m|”—(x)| (57)
where
1 [~ .
us(x) = fo de V (&) exp(+2ik€). (58)
K J—c0
It is assumed that the integrals exist for reabnd have definite limits as — oo (the
Fourier transform ofV).

For positive and integrable potentialg(x) and g(x), and thusa(x) and B(«x), are
given in terms of infinite series which are absolutely convergent in the domain where the
corresponding Fourier transforms &f(x) exist, equation (58). Thus(x) anda(x) are
analytical in the upper halk-plane. The singularities of(x) and 8(x) appear if the
integrals in equation (58) diverge as— oo, which may be only at some valuesbelow
the real axis, at finite distances from it.
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4.3. Finite-range potentials

The functionsa (k) and B(x) are entire, ifV(x) = 0 outside an interva{x_, x,). The
analyticity is an immediate result of equations (56)—(58), simceare finite for potentials
with a finite support.

A more direct proof, as well as additional information on the analytic continuation into
the complexk-plane, can be obtained from explicit expressionsdor) and b(«x). Let
us introduce two real (for reat) solutions of the Sclidinger equationzg(x) and z;(x),
specified by the following initial conditions,

Zox-) =1 7o(x-) =0

z1(x_) =0 z1(x0) =1 (59)
From the continuity of the wavefunction and of its first derivativerat x., one gets the
following expressions fou andb,

explik (xy —x_)) . ,
a= *[—Co +ic(Co+ ¢+ Kk2¢1]
. explix (xy +x_))
n 2ik
whereo1 = zo1(x4). As soon ag and¢’ are analytical functions of?, by the Poinca
theorem [7],a(x) and B(«x) are also analytical in the whole complexplane.

For large|x| and smoothV (x), one can use the semiclassical approximation,

b (g6 — k(2o — &) + «%¢d] (60)

-

fo=,/~— cosd &= —+/p—pssinf
P+
1 .
o= sing (= /p—+ cosf (61)
pP-pP+ p-

where
(k) = /X+ VK2 =V (x)dx Pt =K% —V(xy). (62)

In this approximation one gets

b expix (x4 +x_))
2k \/p-p+
Note that this result is exact for the square-well barrier, equation (68), and analytical

continuation to the complex plane is possible. Asymptotical locations of zeres iof
the complexc-plane are given by the equation

[(k* — p_p4)sind — ik (p— — p) cost]. (63)

(k = p-)(k — py)
(k + p-)(k + py)’
Evidently, there are no zeros in the upper half-planeVfar) > 0.

exp[-2i6(x)] =

(64)

4.4. Exponentially decreasing potentials

If V(x) ox exp(2s+x) asx — oo (s+ > 0 are constant)x(x) and B(x) are no longer
entire functions. The singularities appear wheiix) is not small enough to suppress
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exp(+2ixx), so the integral in equation (58) divergesdato. The singularities nearest to
the real axis appear at Im= —s. for f anda(x), and at Inxk = +s. for g and B(x).
Explicit expressions fou(x) and b(x), revealing their singularities, can be obtained,

assuming that

V(x) =2 exp2s_(x —x_)) X < X_

V(x) = vi exp(—2s (x — x4)) X > xy (65)
wherev.. are constants. The solution to the Sifinger equation fox_ < x < x, is still a
linear combination oty andz;, specified by (59), while fox < x_ andx > x, it is given

by linear combinations of the appropriate Bessel functions. Using the matching conditions
for the wavefunction at.., one gets

ORI T I R 4 P )(04/27 6 /2 T (o) (o)

Hivygod'y, (04) 0, (02) +iv_gidy, (o) ]y (02)
—U.,.l)_é'l.]/u+ (O'+)J/v, (O'—)]

p= FPEE XD by P ) 04/2 7 (0 /D 8, (04) T (o)

2ik
+iv+§0~]/v+ (O‘+)J7v, (O;) + ivfgj/_']wr (O'Jr)]/fv, (O;)
—vpv_tad 'y, (@) T (00)] (66)
wherev, = —ix /sy andoy = ivy/s+. The singularities are the poles of tiefunctions,

as soon aso/2)""J,(o) is known [20] to be an entire function in both and v, while ¢
and¢’ are analytical functions of?, by the Poinca theorem. Thus, both(x) and b(x)
have infinite series of equidistant poles on the imaginary axig. -at—ins+ for a(x) (the
poles are double i§_ = s;), and atx = Finsy. for b(x) (wheren is any positive integer).
The minimal distance of the singularities from the readxis, which was derived from
the integral equations, is non-zero for every potential with an asymptotic exponential decline.
The results of equation (66) are less general. If the assumption of equation (65) is relaxed,
the poles can move off the imaginary axis, as one can see in equation (72) below.

4.5. Singularities of theS-matrix

The singularities of ther- and S-matrices are of physical importance, when the time-
dependent process is considered. They are given by zerog pfas well as by the poles
of b(x), which do not coincide with those af(x).

As was proven in section 4.2, for positive and integrable potentidks), is analytical
in the upper halfc-plane, which is a result of causality,(x), and thusb(x), may have
singularities at finite distances above and below the xeamkis.

The pattern of singularities @f(«) andb(«) in the complexc-plane is determined by the
asymptotic decline of the potential. For potentials having an asymptotic decline faster than
exponential (e.g. finite-range potentials, and the Gaussian barrier), no singularities appear
for finite k. For potentials with exponential asymptotics, the distance from thecreals
to the nearest singularities is determined by the slope of the potentakat

It is important thata(x) has no zeros in the upper half-plane. As soon as the function
is analytical, the number of its zeros is given by the integral

1 da
T 2niJo oa

(67)
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where the contoulC encloses the upper half of the complex plane. For positive and
integrable potentiale (k) is limited in the upper half-plane, so(x) — 1 ask — oo, and
the integral is zero.

The location of zeros ofi(x) in the lower half of the complex-plane depends on the
specific barrier considered. For finite-range potentials the asymptotic distribution of zeros
is given by equation (64). Other examples are considered in the appendix.

5. Conclusion

We have considered the one-dimensional problem, assuming that the potential is non-
negative everywhere. The barrier transmission and reflection amplitudes are described
in terms of two analytical functionsi(x) and B(x), equations (29)-(31). Both the
functions are entire if the potential vanishes outside a finite interval ornxtaeis. For
potentials decreasing exponentially, singularities appear at finite distances to the real axis,
corresponding to the decrease ratesab. For a(x), all the singularities are in the lower
half-plane, while forB(x), the front slope controls the singularities in the upper half-plane,
and the back slope controls those in the lower half. Poles ofStheatrix are given by

zeros ofa(k) = 1 — «/2ix. It is proven that for any non-negative potential they are all in
the lower half-plane.

The causality in the transmission and reflection processes manifests itself in the
analytical properties of the transition amplitudes. These properties have been employed
for the spacetime description of the tunnelling through a potential barrier in the Wigner
phase-space representation [21].
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Appendix. Examples

A number of examples may be found in standard textbooks, e.g. [22].
(i) Square barrier V(x) = Vp for |x| < xp, V(x) = 0 for |x| > xo.

1 . .
a(k) = @[w + p)? exp2i(k — p)xo) — (k — p)? exp(2i(k + p)xo)]

sin 2x
B =Vo > op (68)

wherep = /k2 — V,. One can see that these functions depend, actuallp?pso there is
no cut in thex-plane. Zeros ofi are given by (complex) solutions of the equation

2
exp(—4ipxg) = (zli) . (69)

This equation has no roots for km> 0. If Vj is small enough, there are two roots on the
imaginaryk-axis. Other roots appear in pairs, and their asymptotical position is given by

1 2R
Rep:iln Imp=——log P
2xg

70
0 Vo (70)
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wheren > 1 is an integer.
(i) Exponential barrier V(x) = Vpexp(—|x/xol),

2 1-4y
a= _[F@+vF (i) J ()1, (2)

Xok 2i
_2tdVo o, ,
b= W[JV(Z)J—u(Z) + L ()J.,(2)] (71)

where J, (z) is the Bessel function; = —2ix, andz = 2ixg/Vp.
(iii) The Roschi-Teller barrier: V (x) = Vo/ cost(x/xo).
'?(1 — ikxo) coshro

a=i b=—i—— 72
KXOF(% +io — iIC)Co)F(% —io —ikxg) sinhwk xo (72)

whereo = ,/Voxg - %1. The functiona(x) has zeros atxqg = —i(n + %) + o, and (double)
poles atxxg = —i(n 4+ 1), while 8 has (simple) poles atxo = +in, n = 1,2,.... (Note
thato is imaginary for 2o < Vo~ %2))
(iv) Narrow barrier: V(x) = vgd(x). This is the limit one gets ag, — oo, xo — 0,
2x0Vp = vo, from the three preceding cases. Now both the entire functions are just constant,

a=B=1 (73)

anda(x) has one zero at = —ivg/2.

(v) A double barrier V(x) = Vi(x —d1)+ Vo(x —dy). The case of two non-overlapping
barriers is described by equation (3&)and 8 remain entire functions. As is well known,
new zeros may appear inx) close to the real axis, corresponding to metastable states of
the particle trapped between the barriers. A special case is that of a symmetrical double
barrier, wherei; = a, = coshpe® andb, = —b, = sinhp€?”. Now

a = costt pe=?% 1 sintf pe?d
b =isinh2ocoskd + 68 +y) (74)

whered is the distance between the barrier centres. It is easy to see that the reflection
may vanish at certain resonance values of the energy, independently of the reflection from
a single barrier.
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